Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
J Virol ; : e0185723, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567969

RESUMO

The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE: Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.

2.
EBioMedicine ; 100: 104960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232633

RESUMO

BACKGROUND: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS: Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS: Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION: Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING: Full list of funders is provided at the end of the manuscript.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Feminino , Epitopos , Pandemias , Inteligência Artificial , Anticorpos Antivirais , Anticorpos Neutralizantes , Mesocricetus
3.
Antiviral Res ; 222: 105807, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219914

RESUMO

The World Health Organization advices the use of a quadrivalent vaccine as prophylaxis against influenza, to prevent severe influenza-associated disease and -mortality, and to keep up with influenza antigenic diversity. Different small molecule antivirals to treat influenza have become available. However, emergence of drug resistant influenza viruses has been observed upon use of these antivirals. An appealing alternative approach to prevent or treat influenza is the use of antibody-based antivirals, such as conventional monoclonal antibodies and single-domain antibodies (sdAbs). The surface of the influenza A and B virion is decorated with hemagglutinin molecules, which act as receptor-binding and membrane fusion proteins and represent the main target of neutralizing antibodies. SdAbs that target influenza A and B hemagglutinin have been described. In addition, sdAbs directed against the influenza A virus neuraminidase have been reported, whereas no sdAbs targeting influenza B neuraminidase have been described to date. SdAbs directed against influenza A matrix protein 2 or its ectodomain have been reported, while no sdAbs have been described targeting the influenza B matrix protein 2. Known for their high specificity, ease of production and formatting, sdAb-based antivirals could be a major leap forward in influenza control.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Anticorpos Antivirais , Hemaglutininas , Neuraminidase/química , Infecções por Orthomyxoviridae/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico , Glicoproteínas de Hemaglutininação de Vírus da Influenza
4.
mBio ; 15(1): e0212223, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117059

RESUMO

IMPORTANCE: Human metapneumovirus (hMPV) is an important respiratory pathogen for which no licensed antivirals or vaccines exist. Single-domain antibodies represent promising antiviral biologics that can be easily produced and formatted. We describe the isolation and detailed characterization of two hMPV-neutralizing single-domain antibodies that are directed against the fusion protein F. One of these single-domain antibodies broadly neutralizes hMPV A and B strains, can prevent proteolytic maturation of F, and binds to an epitope in the F trimer interface. This suggests that hMPV pre-F undergoes trimer opening or "breathing" on infectious virions, exposing a vulnerable site for neutralizing antibodies. Finally, we show that this single-domain antibody, fused to a human IgG1 Fc, can protect cotton rats against hMPV replication, an important finding for potential future clinical applications.


Assuntos
Metapneumovirus , Anticorpos de Domínio Único , Humanos , Metapneumovirus/genética , Metapneumovirus/metabolismo , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Proteínas Virais de Fusão/metabolismo
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958758

RESUMO

IL-1R integrates signals from IL-1α and IL-1ß, and it is widely expressed across tissues and immune cell types. While the expression pattern and function of IL-1R within the innate immune system is well studied, its role in adaptive immunity, particularly within the CD8 T cell compartment, remains underexplored. Here, we show that CD8 T cells dynamically upregulate IL-1R1 levels during priming by APCs, which correlates with their proliferation status and the acquisition of an effector phenotype. Notably, this IL-1 sensitivity persists in memory CD8 T cells of both mice and humans, influencing effector cytokine production upon TCR reactivation. Furthermore, our study highlights that antiviral effector and tissue-resident CD8 T cell responses against influenza A virus infection become impaired in the absence of IL-1 signaling. Altogether, these data support the exploitation of IL-1 activity in the context of T cell vaccination strategies and warrant consideration of the impact of clinical IL-1 inhibition on the rollout of T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , Influenza Humana , Humanos , Animais , Camundongos , Imunidade Adaptativa , Interleucina-1 , Antivirais , Camundongos Endogâmicos C57BL
6.
Sci Adv ; 9(30): eadg2829, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494451

RESUMO

Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.


Assuntos
Apoptose , Viroses , Animais , Camundongos , Caspase 8/genética , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
MAbs ; 15(1): 2210709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211816

RESUMO

As small and stable high-affinity antigen binders, VHHs boast attractive characteristics both for therapeutic use in various disease indications, and as versatile reagents in research and diagnostics. To further increase the versatility of VHHs, we explored the VHH scaffold in a structure-guided approach to select regions where the introduction of an N-glycosylation N-X-T sequon and its associated glycan should not interfere with protein folding or epitope recognition. We expressed variants of such glycoengineered VHHs in the Pichia pastoris GlycoSwitchM5 strain, allowing us to pinpoint preferred sites at which Man5GlcNAc2-glycans can be introduced at high site occupancy without affecting antigen binding. A VHH carrying predominantly a Man5GlcNAc2 N-glycan at one of these preferred sites showed highly efficient, glycan-dependent uptake by Mf4/4 macrophages in vitro and by alveolar lung macrophages in vivo, illustrating one potential application of glyco-engineered VHHs: a glycan-based targeting approach for lung macrophage endolysosomal system delivery. The set of optimal artificial VHH N-glycosylation sites identified in this study can serve as a blueprint for targeted glyco-engineering of other VHHs, enabling site-specific functionalization through the rapidly expanding toolbox of synthetic glycobiology.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Antígenos , Epitopos , Macrófagos
9.
Commun Biol ; 6(1): 450, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095140

RESUMO

Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning. Cleavage site predictions on the SARS-CoV-2 S protein, confirmed experimentally, expose the most probable first cut under physiological conditions and suggested furin-like behavior of cathepsins. Crystal structure analysis of representative peptides in complex with cathepsin V reveals rigid and flexible sites consistent with analysis of proteomics data by SAPS-ESI that correspond to positions with heterogeneous and homogeneous distribution of residues. Thereby support for design of selective cleavable linkers of drug conjugates and drug discovery studies is provided.


Assuntos
COVID-19 , Cisteína , Humanos , Proteômica , SARS-CoV-2
10.
Curr Issues Mol Biol ; 45(3): 2521-2532, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36975535

RESUMO

The monitoring of antiviral-resistant influenza virus strains is important for public health given the availability and use of neuraminidase inhibitors and other antivirals to treat infected patients. Naturally occurring oseltamivir-resistant seasonal H3N2 influenza virus strains often carry a glutamate-to-valine substitution at position 119 in the neuraminidase (E119V-NA). Early detection of resistant influenza viruses is important for patient management and for the rapid containment of antiviral resistance. The neuraminidase inhibition assay allows the phenotypical identification of resistant strains; however, this test often has limited sensitivity with high variability depending on the virus strain, drugs and assays. Once a mutation such as E119V-NA is known, highly sensitive PCR-based genotypic assays can be used to identify the prevalence of such mutant influenza viruses in clinical samples. In this study, based on an existing reverse transcriptase real-time PCR (RT-qPCR) assay, we developed a reverse transcriptase droplet digital PCR assay (RT-ddPCR) to detect and quantify the frequency of the E119V-NA mutation. Furthermore, reverse genetics viruses carrying this mutation were created to test the performance of the RT-ddPCR assay and compare it to the standard phenotypic NA assay. We also discuss the advantage of using an RT-ddPCR instead of qPCR method in the context of viral diagnostics and surveillance.

11.
PLoS One ; 18(1): e0280825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689429

RESUMO

Influenza B viruses (IBV) are responsible for a considerable part of the burden caused by influenza virus infections. Since their emergence in the 1980s, the Yamagata and Victoria antigenic lineages of influenza B circulate in alternate patterns across the globe. Furthermore, their evolutionary divergence and the appearance of new IBV subclades complicates the prediction of future influenza vaccines compositions. It has been proposed that the addition of the neuraminidase (NA) antigen could potentially induce a broader protection and compensate for hemagglutinin (HA) mismatches in the current vaccines. Here we show that anti-NA and -HA sera against both Victoria and Yamagata lineages have limited inter-lineage cross-reactivity. When transferred to mice prior to infection with a panel of IBVs, anti-NA sera were as potent as anti-HA sera in conferring protection against homologous challenge and, in some cases, conferred superior protection against challenge with heterologous IBV strains.


Assuntos
Proteção Cruzada , Soros Imunes , Vírus da Influenza B , Influenza Humana , Animais , Humanos , Camundongos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Influenza Humana/prevenção & controle , Neuraminidase , Infecções por Orthomyxoviridae
12.
Anal Chem ; 94(50): 17379-17387, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490367

RESUMO

The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov2MS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix. A strong positive correlation was observed with qPCR detection beyond a quantification cycle of 30-31, the level where no live virus can be cultured. The automatable sample preparation and reduced LC dependency allow analysis of up to 500 samples per day per instrument. Importantly, peptide enrichment allows detection of the N protein in pooled samples without sensitivity loss. Easily multiplexed, we detect variants and propose targets for Influenza A and B detection. Thus, the Cov2MS assay can be adapted to test for many different pathogens in pooled samples, providing longitudinal epidemiological monitoring of large numbers of pathogens within a population as an early warning system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Espectrometria de Massas/métodos , Peptídeos , Sensibilidade e Especificidade
13.
Microb Genom ; 8(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36169645

RESUMO

Influenza viruses exhibit considerable diversity between hosts. Additionally, different quasispecies can be found within the same host. High-throughput sequencing technologies can be used to sequence a patient-derived virus population at sufficient depths to identify low-frequency variants (LFV) present in a quasispecies, but many challenges remain for reliable LFV detection because of experimental errors introduced during sample preparation and sequencing. High genomic copy numbers and extensive sequencing depths are required to differentiate false positive from real LFV, especially at low allelic frequencies (AFs). This study proposes a general approach for identifying LFV in patient-derived samples obtained during routine surveillance. Firstly, validated thresholds were determined for LFV detection, whilst balancing both the cost and feasibility of reliable LFV detection in clinical samples. Using a genetically well-defined population of influenza A viruses, thresholds of at least 104 genomes per microlitre and AF of ≥5 % were established as detection limits. Secondly, a subset of 59 retained influenza A (H3N2) samples from the 2016-2017 Belgian influenza season was composed. Thirdly, as a proof of concept for the added value of LFV for routine influenza monitoring, potential associations between patient data and whole genome sequencing data were investigated. A significant association was found between a high prevalence of LFV and disease severity. This study provides a general methodology for influenza LFV detection, which can also be adopted by other national influenza reference centres and for other viruses such as SARS-CoV-2. Additionally, this study suggests that the current relevance of LFV for routine influenza surveillance programmes might be undervalued.


Assuntos
COVID-19 , Influenza Humana , Genoma Viral , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , SARS-CoV-2
14.
J Virol ; 96(19): e0129722, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102648

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Nonstructural protein NS1 of RSV modulates the host innate immune response by acting as an antagonist of type I and type III interferon (IFN) production and signaling in multiple ways. Likely, NS1 performs this function by interacting with different host proteins. In order to obtain a comprehensive overview of the NS1 interaction partners, we performed three complementary protein-protein interaction screens, i.e., BioID, MAPPIT, and KISS. To closely mimic a natural infection, the BioID proximity screen was performed using a recombinant RSV in which the NS1 protein is fused to a biotin ligase. Remarkably, MED25, a subunit of the Mediator complex, was identified in all three performed screening methods as a potential NS1-interacting protein. We confirmed the interaction between MED25 and RSV NS1 by coimmunoprecipitation, not only upon overexpression of NS1 but also with endogenous NS1 during RSV infection. We also demonstrate that the replication of RSV can be enhanced in MED25 knockout A549 cells, suggesting a potential antiviral role of MED25 during RSV infection. Mediator subunits function as transcriptional coactivators and are involved in transcriptional regulation of their target genes. Therefore, the interaction between RSV NS1 and cellular MED25 might be beneficial for RSV during infection by affecting host transcription and the host immune response to infection. IMPORTANCE Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell. A unique RSV protein, NS1, is largely responsible for this effect, probably through interaction with multiple host proteins. A better understanding of the interactions that occur between RSV NS1 and host proteins may help to identify targets for an effective antiviral therapy. We addressed this question by performing three complementary protein-protein interaction screens and identified MED25 as an RSV NS1-interacting protein. We propose a role in innate anti-RSV defense for this Mediator complex subunit.


Assuntos
Complexo Mediador , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas não Estruturais Virais , Células A549 , Humanos , Interferons/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
Front Microbiol ; 13: 809887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516436

RESUMO

Each year, seasonal influenza results in high mortality and morbidity. The current classification of circulating influenza viruses is mainly focused on the hemagglutinin gene. Whole-genome sequencing (WGS) enables tracking mutations across all influenza segments allowing a better understanding of the epidemiological effects of intra- and inter-seasonal evolutionary dynamics, and exploring potential associations between mutations across the viral genome and patient's clinical data. In this study, mutations were identified in 253 Influenza A (H3N2) clinical isolates from the 2016-2017 influenza season in Belgium. As a proof of concept, available patient data were integrated with this genomic data, resulting in statistically significant associations that could be relevant to improve the vaccine and clinical management of infected patients. Several mutations were significantly associated with the sampling period. A new approach was proposed for exploring mutational effects in highly diverse Influenza A (H3N2) strains through considering the viral genetic background by using phylogenetic classification to stratify the samples. This resulted in several mutations that were significantly associated with patients suffering from renal insufficiency. This study demonstrates the usefulness of using WGS data for tracking mutations across the complete genome and linking these to patient data, and illustrates the importance of accounting for the viral genetic background in association studies. A limitation of this association study, especially when analyzing stratified groups, relates to the number of samples, especially in the context of national surveillance of small countries. Therefore, we investigated if international databases like GISAID may help to verify whether observed associations in the Belgium A (H3N2) samples, could be extrapolated to a global level. This work highlights the need to construct international databases with both information of viral genome sequences and patient data.

16.
Mucosal Immunol ; 15(4): 745-761, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418673

RESUMO

Migratory dendritic cells expressing CD103 are the targets for mucosal vaccines. These belong to either of two lineage-restricted subsets, cDC1 or cDC2 cells, which have been linked to priming of functionally distinct CD4 T cells. However, recent studies have identified plasticity in cDC2 cells with overlapping functions with cDC1 cells, while the converse has not been reported. We genetically engineered a vaccine adjuvant platform that targeted the cholera toxin A1 (CTA1) ADP-ribosylating enzyme to CD103+ cDC1 and cDC2 cells using a single-chain antibody (scFv) to CD103. Unexpectedly, intranasal immunization with the CTA1-svFcCD103 adjuvant modified cDC1 cells to effectively prime Th17 cells, a function previously limited to cDC2 cells. In fact, cDC2 cells were dispensible, while cDC1 cells, lacking in Batf3-/- mice, were critical. Following intranasal immunizations isolated cDC1 cells from mLN exclusively promoted Rorgt+ T cells and IL-17, IL-21, and IL-22 production. Strong CD8 T cell responses through antigen cross presentation by cDC1 cells were also observed. Single-cell RNAseq analysis revealed upregulation of Th17-promoting gene signatures in sorted cDC1 cells. Gene expression in isolated cDC2 cells was largely unaffected. Our finding represents a major shift of paradigm as we have documented functional plasticity in cDC1 cells.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Difosfato de Adenosina/metabolismo , Adjuvantes Imunológicos , Animais , Toxina da Cólera/metabolismo , Células Dendríticas , Humanos , Influenza Humana/metabolismo , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Células Th17
17.
Cell Death Dis ; 13(3): 280, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351865

RESUMO

RIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3-/- mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3-/- mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3-/- vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3-/- mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3-/- mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3-/- mice. Likewise following IAV infection of Ripk3-/- mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3-/- mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3-/- mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Humanos , Imunização Passiva , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Vacinação , Proteínas da Matriz Viral
18.
Mucosal Immunol ; 15(4): 717-729, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35260804

RESUMO

The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively restricted virus replication as determined by CD4 T cell depletion studies. Single-cell RNAseq transcriptomic and TCR VDJ-analysis of M2e-tetramer-sorted CD4 T cells on day 3 and 8 post infection revealed complete Th17-lineage dominance (no Th1 or Tregs) with extensive functional diversity and expression of gene markers signifying mature resident Trm cells (Cd69, Nfkbid, Brd2, FosB). Unexpectedly, the same TCR clonotype hosted cells with different Th17 subcluster functions (IL-17, IL-22), regulatory and cytotoxic cells, suggesting a tissue and context-dependent differentiation of reactivated Th17 Trm cells. A gene set enrichment analysis demonstrated up-regulation of regulatory genes (Lag3, Tigit, Ctla4, Pdcd1) in M2e-specific Trm cells on day 8, indicating a tissue damage preventing function. Thus, contrary to current thinking, lung M2e-specific Th17 Trm cells are sufficient for controlling infection and for protecting against tissue injury. These findings will have strong implications for vaccine development against respiratory virus infections and influenza virus infections, in particular.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Memória Imunológica , Pulmão , Receptores de Antígenos de Linfócitos T , Células Th17
19.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216012

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host's innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host's innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.


Assuntos
Imunidade Inata , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas não Estruturais Virais/metabolismo , Humanos , Lactente , Interferon Tipo I/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Transdução de Sinais , Replicação Viral
20.
PLoS One ; 17(1): e0262873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100294

RESUMO

Influenza neuraminidase (NA) is implicated in various aspects of the virus replication cycle and therefore is an attractive target for vaccination and antiviral strategies. Here we investigated the potential for NA-specific antibodies to interfere with A(H1N1)pdm09 replication in primary human airway epithelial (HAE) cells. Mouse polyclonal anti-NA sera and a monoclonal antibody could block initial viral entry into HAE cells as well as egress from the cell surface. NA-specific polyclonal serum also reduced virus replication across multiple rounds of infection. Restriction of virus entry correlated with the ability of the serum or monoclonal antibody to mediate neuraminidase inhibition (NI). Finally, human sera with NI activity against the N1 of A(H1N1)pdm09 could decrease H6N1 virus infection of HAE cells, highlighting the potential contribution of anti-NA antibodies in the control of influenza virus infection in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Células Epiteliais , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/imunologia , Neuraminidase/imunologia , Mucosa Respiratória , Proteínas Virais/imunologia , Replicação Viral/imunologia , Animais , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Camundongos , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...